NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A geochemical assessment of possible lunar ore formationThe Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 10(exp 4) times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar resources is the ignorance about the largely unexplored Moon.
Document ID
19910016713
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Haskin, Larry A.
(Washington Univ. Saint Louis, MO., United States)
Colson, Russell O.
(Washington Univ. Saint Louis, MO., United States)
Vaniman, David
(Los Alamos National Lab. NM., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1991
Publication Information
Publication: Arizona Univ., Resources of Near-Earth Space: Abstracts
Subject Category
Lunar And Planetary Exploration
Accession Number
91N26027
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available