NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Finite-volume application of high-order ENO schemes to two-dimensional boundary-value problemsFinite-volume applications of high-order accurate ENO schemes to two-dimensional boundary-value problems are studied. These schemes achieve high-order spatial accuracy, in smooth regions, by a piecewise polynomial approximation of the solution from cell averages. In addition, this spatial operation involves an adaptive stencil algorithm in order to avoid the oscillatory behavior that is associated with interpolation across steep gradients. High-order TVD Runge-Kutta methods are employed for time integration, thus making these schemes best suited for unsteady problems. Fifth- and sixth-order accurate applications are validated through a grid refinement study involving the solutions of scalar hyperbolic equations. A previously proposed extension for the Euler equations of gas dynamics is tested, including its application to solutions of boundary-value problems involving solid walls and curvilinear coordinates.
Document ID
19910036948
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Casper, Jay
(Vigyan, Inc. Hampton, VA, United States)
Date Acquired
August 15, 2013
Publication Date
January 1, 1991
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
AIAA PAPER 91-0631
Accession Number
91A21571
Funding Number(s)
CONTRACT_GRANT: NAS1-18585
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available