NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aerobrake design studies for manned Mars missionsThe dimensions of aerobrakes and associated heat shields are calculated as a fraction of the vehicle mass required for a high-velocity manned Mars entry. The entry speed and deceleration limit are assumed to be 8.6 km/sec and 5 earth g, respectively, to consider vehicles with low lift-drag ratio (L/D) and ballistic coefficients of 100 and 200 kg/sq m, as well as a vehicle with a medium L/D and a ballistic coefficient of 375 kg/sq m. The aerobrake mass plus the heat shield divided by an optimized, blunt-shaped vehicle's total mass is 15 and 13 percent for ballistic coefficients of 100 and 200 kg/sq m, respectively. For a winged vehicle the mass fraction is 17 percent because the higher ballistic coefficient requires more thermal protection to account for the greater temperatures generated. It is concluded that aerobraking is more efficient than propulsive braking because the mass fraction for a propulsive system would be 4 or 5 times greater than those calculated for aerobraking.
Document ID
19910058790
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Tauber, M.
(NASA Ames Research Center Moffett Field, CA, United States)
Chargin, M.
(NASA Ames Research Center Moffett Field, CA, United States)
Henline, W.
(NASA Ames Research Center Moffett Field, CA, United States)
Hamm, K. R., Jr.
(NASA Ames Research Center Moffett Field, CA, United States)
Miura, H.
(NASA Ames Research Center Moffett Field, CA, United States)
Chiu, A.
(NASA Ames Research Center Moffett Field, CA, United States)
Yang, L.
(Sterling Software, Inc. Palo Alto, CA, United States)
Date Acquired
August 15, 2013
Publication Date
June 1, 1991
Subject Category
Spacecraft Design, Testing And Performance
Report/Patent Number
AIAA PAPER 91-1344
Accession Number
91A43413
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available