NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Zhamanshin impact feature: A new class of complex crater?The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert.
Document ID
19930000951
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Garvin, J. B.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Schnetzler, C. C.
(Maryland Univ. College Park., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1992
Publication Information
Publication: Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution
Subject Category
Geophysics
Accession Number
93N10139
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available