NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of spatial order of accuracy on the computation of vortical flowfieldsThe effect of the order-of-accuracy, used for the spatial discretization, on the resolution of the leading edge vortices over sharp-edged delta wings is investigated. The flowfield is computed using a viscous/inviscid zonal approach. The viscous flow in the vicinity of the wing is computed using the conservative formulation of the compressible, thin-layer Navier-Stokes equations. The leeward-side vortical flowfield and the other flow regions away from the surface are computed as inviscid. The time integration is performed with both an explicit fourth-order Runge-Kutta scheme and an implicit, factorized, iterative scheme. High-order-accurate inviscid fluxes are computed using both a conservative and a non-conservative (primitive variable) formulation. The nonlinear, inviscid terms of the primitive variable form of the governing equations are evaluated with a finite-difference numerical scheme based on the sign of the eigenvalues. High-order, upwind-biased, finite difference formulas are used to evaluate the derivatives of the nonlinear convective terms. Computed results are compared with available experimental data, and comparisons of the flowfield in the vicinity of the vortex cores are presented.
Document ID
19930061067
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Ekaterinaris, J. A.
(U.S. Navy-NASA Joint Inst. of Aeronautics Moffett Field, CA, United States)
Date Acquired
August 16, 2013
Publication Date
January 1, 1993
Publication Information
Publication: In: AIAA Computational Fluid Dynamics Conference, 11th, Orlando, FL, July 6-9, 1993, Technical Papers. Pt. 2 (A93-44994 18-34)
Publisher: American Institute of Aeronautics and Astronautics
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 93-3371
Accession Number
93A45064
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available