NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A multigrid nonoscillatory method for computing high speed flowsA multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.
Document ID
19930061106
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Li, C. P.
(NASA Lyndon B. Johnson Space Center Houston, TX, United States)
Shieh, T. H.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 16, 2013
Publication Date
January 1, 1993
Publication Information
Publication: In: AIAA Computational Fluid Dynamics Conference, 11th, Orlando, FL, July 6-9, 1993, Technical Papers. Pt. 2 (A93-44994 18-34)
Publisher: American Institute of Aeronautics and Astronautics
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 93-3319
Accession Number
93A45103
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available