NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Some practical turbulence modeling options for Reynolds-averaged full Navier-Stokes calculations of three-dimensional flowsNew turbulence modeling options recently implemented for the 3D version of Proteus, a Reynolds-averaged compressible Navier-Stokes code, are described. The implemented turbulence models include: the Baldwin-Lomax algebraic model, the Baldwin-Barth one-equation model, the Chien k-epsilon model, and the Launder-Sharma k-epsilon model. Features of this turbulence modeling package include: well documented and easy to use turbulence modeling options, uniform integration of turbulence models from different classes, automatic initialization of turbulence variables for calculations using one- or two-equation turbulence models, multiple solid boundaries treatment, and fully vectorized L-U solver for one- and two-equation models. Good agreements are obtained between the computational results and experimental data. Sensitivity of the compressible turbulent solutions with the method of y(+) computation, the turbulent length scale correction, and some compressibility corrections are examined in detail. Test cases show that the highly optimized one- and two-equation turbulence models can be used in routine 3D Navier-Stokes computations with no significant increase in CPU time as compared with the Baldwin-Lomax algebraic model.
Document ID
19930064161
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Bui, Trong T.
(NASA Lewis Research Center Cleveland, OH, United States)
Date Acquired
August 16, 2013
Publication Date
July 1, 1993
Subject Category
Aerodynamics
Report/Patent Number
AIAA PAPER 93-2964
Meeting Information
Meeting: AIAA, Fluid Dynamics Conference
Location: Orlando, FL
Country: United States
Start Date: July 6, 1993
End Date: July 9, 1993
Sponsors: AIAA
Accession Number
93A48158
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available