NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
DSMC simulation of low Reynolds number nozzle flowsA numerical analysis of low Reynolds number nozzle flows was performed to investigate the loss mechanisms involved and to determine the nozzle wall contour that minimizes these losses. DSMC was used to simulate flows through three different nozzle configurations at two different stagnation chamber temperatures so that the heat transfer losses could be separated from the wall contour effects on performance. A trumpet-shaped nozzle had 5 percent higher efficiency than a conical nozzle and a 3 percent higher efficiency than a bell-shaped nozzle with the unheated flow. With heated flow both the trumpet and bell-shaped nozzles had a 6.5 percent higher efficiency than the conical nozzle. The conical nozzle had the highest discharge coefficient of the three configurations, 0.92, and the trumpet-shaped nozzle had the lowest, 0.82. The discharge coefficient of each nozzle was unaffected by the change in stagnation temperature; however the increase in stagnation temperature increased the heat transfer and viscous losses in the boundary layer. These results suggest that the trumpet-shaped wall contour performed most efficiently except near the throat region, where it incurred large viscous losses. However, the bell-shaped nozzle may increase its overall performance with an increase in stagnation temperature.
Document ID
19930066230
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Zelesnik, D.
(NASA Headquarters Washington, DC United States)
Micci, M. M.
(NASA Headquarters Washington, DC United States)
Long, L. N.
(Pennsylvania State Univ. University Park, United States)
Date Acquired
August 16, 2013
Publication Date
June 1, 1993
Subject Category
Fluid Mechanics And Heat Transfer
Report/Patent Number
AIAA PAPER 93-2490
Meeting Information
Meeting: AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit
Location: Monterey, CA
Country: United States
Start Date: June 28, 1993
End Date: June 30, 1993
Sponsors: SAE, AIAA, ASME, ASEE
Accession Number
93A50227
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available