NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Numerical study of a delta planform with multiple jets in ground effectThe flow past a 60-deg delta wing equipped with two thrust-reverser jets near the inboard trailing edge has been analyzed by numerical solution of the 3D thin-layer Navier-Stokes equations. An implicit, partially flux-split, approximately-factored Navier-Stokes solver coupled with a multiple grid embedding scheme has been adapted to this problem. Studies of the impact of numerical parameters (e.g., grid refinement and dissipation levels), and flow-field parameters such as the height of the delta wing above the ground plane and the jet size on the solution, were performed. Results of these numerical studies indicate some challenges in the accurate resolution of complex 3D free shear layers and jets. Nevertheless, flow features such as jet deformation and ground vortex formation observed in experimental flow visualizations are captured. Further, comparisons with experimental data confirm the ability to simulate the loss of wing-borne lift, commonly referred to 'suckdown, as the delta planform flies at slow speeds in close proximity to the ground. Detailed analysis of the numerical results has also given additional insight into the structure of the ground vortex and the mechanisms of lift loss.
Document ID
19930069203
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Chawla, K.
(NASA Ames Research Center Moffett Field, CA, United States)
Van Dalsem, W. R.
(NASA Ames Research Center Moffett Field, CA, United States)
Rao, K. V.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 16, 2013
Publication Date
September 1, 1989
Subject Category
Aerodynamics
Report/Patent Number
SAE PAPER 892283
Accession Number
93A53200
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available