NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Investigations of turbulent scalar fields using probability density function approachScalar fields undergoing random advection have attracted much attention from researchers in both the theoretical and practical sectors. Research interest spans from the study of the small scale structures of turbulent scalar fields to the modeling and simulations of turbulent reacting flows. The probability density function (PDF) method is an effective tool in the study of turbulent scalar fields, especially for those which involve chemical reactions. It has been argued that a one-point, joint PDF approach is the one to choose from among many simulation and closure methods for turbulent combustion and chemically reacting flows based on its practical feasibility in the foreseeable future for multiple reactants. Instead of the multi-point PDF, the joint PDF of a scalar and its gradient which represents the roles of both scalar and scalar diffusion is introduced. A proper closure model for the molecular diffusion term in the PDF equation is investigated. Another direction in this research is to study the mapping closure method that has been recently proposed to deal with the PDF's in turbulent fields. This method seems to have captured the physics correctly when applied to diffusion problems. However, if the turbulent stretching is included, the amplitude mapping has to be supplemented by either adjusting the parameters representing turbulent stretching at each time step or by introducing the coordinate mapping. This technique is still under development and seems to be quite promising. The final objective of this project is to understand some fundamental properties of the turbulent scalar fields and to develop practical numerical schemes that are capable of handling turbulent reacting flows.
Document ID
19930073984
Acquisition Source
Legacy CDMS
Document Type
Other
Authors
Gao, Feng
(Stanford Univ. CA, United States)
Date Acquired
August 16, 2013
Publication Date
February 1, 1991
Publication Information
Publication: Annual Research Briefs, 1990
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
93N71431
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available