NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Transmantle flux tectonicsVenus, Earth, and Mars have surfaces that display topographic domes and depressions with quasi-circular planimetric shapes, relief of 0 to several km, and large spatial scales (10(exp 2) to 10(exp 4) km). Our morphostructural mapping reveals hierarchical arrangements of these features. They are explained by a model of long-acting mantle convection, as a particular case of convection in a stratified and random inhomogeneous medium, which develops the form of a hierarchy of different convective pattern scales, each arising from different levels in the mantle. The hypothesis of transmantle flux tectonics parsimoniously explains a diversity of seemingly unrelated terrestrial planetary phenomena, including Earth megaplumes, global resurfacing epochs on Venus, and cyclic ocean formation and global climate change for Mars. All these phenomenon are hypothesized to be parsimoniously explained by a process of transmantle flux tectonics in which long-acting mantle convection generates stresses in blocks of planetary lithosphere to produce distinctive quasi-circular global-hierarchical morphostructure (QGM) patterns. Transmantle flux tectonics differs from plume tectonics in that individual plumes are not considered in isolation. Rather, a wholly interactive process is envisioned in which various spatial and temporal scales of convection operate contemporaneously and hierarchically within other scales. This process of continual change by hierarchical convective cells affects the surface at varying temporal and spatial scales, and its effects are discernable through their relic geological manifestations, the QGM patterns.
Document ID
19940007777
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Finn, V. J.
(Arizona Univ. Tucson, AZ, United States)
Dolginov, A. Z.
(Lunar and Planetary Inst. Houston, TX., United States)
Baker, V. R.
(Arizona Univ. Tucson, AZ, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
Subject Category
Geophysics
Accession Number
94N12249
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available