NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mobile antenna development at JPLThe Jet Propulsion Laboratory (JPL), under the sponsorship of NASA, has pioneered the development of land vehicle antennas for commercial mobile satellite communications. Several novel antennas have been developed at L-band frequencies for the Mobile Satellite (MSAT) program initiated about a decade ago. Currently, two types of antennas are being developed at K- and Ka-band frequencies for the ACTS (Advanced Communications Technology Satellite) Mobile Terminal (AMT) project. For the future, several hand-held antenna concepts are proposed for the small terminals of the Ka-band Personal Access Satellite System (PASS). For the L-band MSAT program, a number of omni-directional low-gain antennas, such as the crossed drooping-dipoles, the higher-order-mode circular microstrip patch, the quadrifilar helix, and the wrapped-around microstrip 'mast' array, have been developed for lower data rate communications. Several medium-gain satellite tracking antennas, such as the electronically scanned low-profile phased array, the mechanically steered tilted microstrip array, the mechanically steered low-profile microstrip Yagi array, and the hybrid electronically/mechanically steered low-profile array, have been developed for the MSAT's higher data rate and voice communications. To date, for the L-band vehicle application, JPL has developed the world's lowest-profile phased array (1.8 cm height), as well as the lowest-profile mechanically steered antenna (3.7 cm height). For the 20/30 GHz AMT project, a small mechanically steered elliptical reflector antenna with a gain of 23 dBi has recently been developed to transmit horizontal polarization at 30 GHz and receive vertical polarization at 20 GHz. Its hemispherical radome has a height of 10 cm and a base diameter of 23 cm. In addition to the reflector, a mechanically steered printed MMIC active array is currently being developed to achieve the same electrical requirements with a low profile capability. These AMT antenna developments, along with other Ka-band technologies, will lead to the development of several compact hand-held terminals for the PASS program. A few antenna concepts, such as the lap-top or desk-top terminal's printed array, the hand-held phased array, and the head-mounted low-profile array, have been proposed to achieve a future vision for the personal access communications system.
Document ID
19940015984
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Huang, J.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Jamnejad, V.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Densmore, A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Tulintseff, A.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Thomas, R.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Woo, K.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: gress In Electromagnetics Research Symposium (PIERS)
Subject Category
Communications And Radar
Accession Number
94N20457
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available