NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Response of the topography and gravity field on Venus to mantle upwelling beneath a chemical boundary layerThe long wavelength correlation of the gravity and topography and the large apparent depths of compensation (approximately 150-300 km) for large highland regions on Venus require significant differences between the interior structure of Earth and Venus. The morphology, geologic history, and large apparent depths of compensation for many highlands have been interpreted to indicate areas of mantle upwelling. A large apparent depth of compensation at a mantle upwelling is generally interpreted to indicate the base of the thermal boundary layer of convection. A boundary layer thickness of 150-300 km implies that the interior of Venus is presently much colder than Earth and thus tectonically less active. The recent Magellan mission has provided contradictory evidence regarding the present level of tectonic activity on Venus, prompting considerable debate. In this study, we investigate the possibility that a chemical boundary layer acts together with a thermal boundary layer to produce large apparent depths of compensation, or equivalently, large geoid-to-topography-ratios (GTR's). The crust of a planet forms through partial melting of mantle materials. Both the melt and the residuum are lower in density than unmelted (or undepleted) mantle. In the absence of vigorous plate tectonics, a thick layer of buoyant residuum, or depleted mantle, may collect beneath the lithosphere. In this scenario, the thermal lithosphere does not need to be thick and cold to match the GTR's. Cooling of the depleted layer may lead to overturn of the upper mantle and episodic resurfacing with time scales on the order of 300-500 MY, consistent with the resurfacing age of Venus.
Document ID
19940016302
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Smrekar, Suzanne E.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Parmentier, E. Marc
(Brown Univ. Providence, RI., United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z
Subject Category
Lunar And Planetary Exploration
Accession Number
94N20775
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available