NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
INMARSAT's personal communicator systemInmarsat has been providing near global mobile satellite communications since 1982 and Inmarsat terminals are currently being used in more than 130 countries. The terminals have been reduced in size and cost over the years and new technology has enabled the recent introduction of briefcase sized personal telephony terminals (Inmarsat-M). This trend continues and we are likely to see Inmarsat handheld terminals by the end of the decade. These terminals are called Inmarsat-P and this paper focuses on the various elements required to support a high quality service to handheld terminals. The main system elements are: the handheld terminals; the space segment with the associated orbits; and the gateways to terrestrial networks. It is both likely and desirable that personal handheld satellite communications will be offered by more than one system provider and this competition will ensure strong emphasis on service quality and cost of ownership. The handheld terminals also have to be attractive to a large number of potential users, and this means that the terminals must be small enough to fit in a pocket. Battery lifetime is another important consideration, and this coupled with radiation safety requirements limits the maximum radiated EIRP. The terminal G/T is mainly constrained by the gain of the omnidirectional antenna and the noise figure of the RF front end (including input losses). Inmarsat has examined, with the support of industry, a number of Geosynchronous (GSO), Medium Earth Orbit (MEO) and Low Earth Orbit (LEO) satellite options for the provision of a handheld mobile satellite service. This paper describes the key satellite and orbit parameters and tradeoffs which affect the overall quality of service and the space segment costing. The paper also stresses not only the importance of using and sharing the available mobile frequency band allocations efficiently, but also the key considerations affecting the choice of feeder link bands. The design of the gateways and the terrestrial network is critical to the overall viability of the service, and this paper also examines the key technical parameters associated with the Land Earth Stations (LES), which act as gateways into the Public Switched Telephone Network (PSTN). These not only include the design tradeoffs associated with the LES, but also the different terrestrial network interface options. The paper concludes with a brief description of the satellite propagation conditions associated with the use of handheld terminals. It describes how the handheld results in a number of propagation impairments which are not common to the previous measurements associated with vehicle mounted antennas. These measurements indicate that there is a complex tradeoff between link margin and the elevation angle to the satellite which has a significant impact on the space segment requirements and costing.
Document ID
19940018315
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Hart, Nick
(International Maritime Satellite Organization London, United Kingdom)
Haugli, HANS-C.
(International Maritime Satellite Organization London, United Kingdom)
Poskett, Peter
(International Maritime Satellite Organization London, United Kingdom)
Smith, K.
(International Maritime Satellite Organization London, United Kingdom)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: JPL, Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)
Subject Category
Communications And Radar
Accession Number
94N22788
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available