NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Eddy mixing coefficient values derived from simulations with the NASA Ames Mars GCMValues of eddy mixing coefficients, especially that for vertical mixing, are of particular importance for various photochemical models of the Mars atmosphere, which are either globally or zonally averaged. These models represent atmospheric transport processes in terms of eddy diffusion. While this is not appropriate for the advective transport by the mean meridional circulation (in general, a part of the eddy diffusion tensor actually does represent advection--a 'correction' to the Eulerian-mean circulation), it can be applied to simulate both the small- and larger-scale eddy transports of an atmospheric constituent. An effort is underway to estimate values of the eddy mixing coefficients for the Mars atmosphere using circulation data generated with the NASA Ames Mars GCM. This model simulates the three-dimensional winds in the atmosphere, and these are then used as inputs for a tracer transport model. The latter model has previously been used in interactive dust transport experiments with the Ames GCM. Idealized tracer transport experiments, with a conservative or nearly conservative hypothetical tracer, are performed to generate data from which the eddy diffusion coefficients can be estimated. Carrying out matched pairs of tracer experiments, using two very different initial states, permits all four components of the diffusion tensor to be determined. A large number of GCM experiments have been conducted, spanning a range of seasons and atmospheric dust loading, allowing the eddy mixing coefficients to be estimated for a variety of atmospheric conditions.
Document ID
19940020402
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Barnes, J. R.
(Oregon State Univ. Corvallis, OR, United States)
Walsh, Thomas D.
(Oregon State Univ. Corvallis, OR, United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1993
Publication Information
Publication: Lunar and Planetary Inst., Workshop on Atmospheric Transport on Mars
Subject Category
Lunar And Planetary Exploration
Accession Number
94N24875
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available