NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Ion transport and loss in the Earth's quiet ring current. 2: Diffusion and magnetosphere-ionosphere couplingWe have studied the transport and loss of H(+), He(+), and He(++) ions in the Earth's quiet time ring current (1 to 300 keV/e, 3 to 7 R(sub E), Kp less than 2+, absolute value of Dst less than 11, 70 to 110 degs pitchangles, all LT) comparing the standard radial diffusion model developed for the higher-energy radiation belt particles with measurements of the lower energy ring current ions in a previous paper. Large deviations of that model, which fit only 50% of the data to within a factor of 10, suggested that another transport mechanism is operating in the ring current. Here we derive a modified diffusion coefficient corrected for electric field effects on ring current energy ions that fit nearly 80% of the data to within a factor of 2. Thus we infer that electric field fluctuations from the low-latitude to midlatitude ionosphere (ionospheric dynamo) dominated the ring current transport, rather than high-latitude or solar wind fluctuations. Much of the remaining deviation may arise from convective electric field transport of the E less than 30 keV particles. Since convection effects cannot be correctly treated with this azimuthally symmetric model, we defer treatment of the lowest-energy ions to a another paper. We give chi(exp 2) contours for the best fit, showing the dependence of the fit upon the internal/external spectral power of the predicted electric and magnetic field fluctuations.
Document ID
19950029533
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Sheldon, R. B.
(Univ. of Maryland, College Park, MD United States)
Date Acquired
August 16, 2013
Publication Date
April 1, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: A4
ISSN: 0148-0227
Subject Category
Geophysics
Accession Number
95A61132
Funding Number(s)
CONTRACT_GRANT: NAG5-716
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available