NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Motion of the heliospheric termination shock. 2: Energy loss due to energetic particle accelerationWe present a generalization of earlier analysis of the motion of the heliospheric termination shock in response to heliospheric disturbances (Barnes, 1993) (paper 1), to allow jump conditions that include an energy sink at the shock front. The motivation for this study is that acceleration of the anomalous cosmic ray component may in fact represent such a sink. We have idealized the situation by assuming an infinitely thin shock parameterized by a quantity lambda(0 less than or equals lambda less than or equals 1), defined as the fraction of solar wind energy that is lost due to acceleration of the energetic particle component. If the sink is strong (consuming, say, 50% or more of the incident solar wind energy), the model leads to the following principal conclusions: (1) the shocked plasma would be much denser and cooler than in the standard gasdynamic case, thereby leading to more favorable conditions for direct observation of the shocked plasma; (2) the equilibrium shock position would be slightly farther (less than 10%) from the Sun than in the standard model; (3) as in the gasdynamic case, the shock would normally be in motion, so that the instantaneous position of the termination shock is not determined by interstellar conditions but by the recent history of the wind that has passed through the termination shock; and (4) the response of the shock to upstream disturbances would be similar to the response in the gasdynamic case, but the speed of the new termination shock would be somewhat smaller (probably by a f actor of 4 or less). We estimate that this speed is typically, approximately a few tens of kilometers per second corresponding to an inward or outward excursion of order of less than 1 to several AU, rather less than conventional estimates of several tens of AU.
Document ID
19950029598
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Barnes, Aaron
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 16, 2013
Publication Date
April 1, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: A4
ISSN: 0148-0227
Subject Category
Geophysics
Accession Number
95A61197
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available