NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Comparison of the seasonal and interannual variability of phytoplankton pigment concentrations in the Peru and California Current systemsMonthly composite images from the global coastal zone color scanner (CZCS) data set are used to provide an initial illustration and comparison of seasonal and interannual variability of phytoplankton pigment concentration along the western coasts of South and North America in the Peru Current system (PCS) and California Current system (CCS). The analysis utilizes the entire time series of available data (November 1978 to June 1986) to form a mean annual cycle and an index of interannual variability for a series of both latitudinal and cross-shelf regions within each current system. Within 100 km of the coast, the strongest seasonal cycles in the CCS are in two regions, one between 34 deg and 45 deg N and the second between 24 deg and 29 deg N, each with maximum concentrations (greater than 3.0 mg m(exp-3)) in May-June. Weaker seasonal variability is present north of 45 deg N and in the Southern California Bight region (32 deg N). Within the PCS, in the same 100-km-wide coastal region, highest (greater than 45 deg S) and lowest (less than 20 deg S) latitude regions have a similar seasonal cycle with maximum concentrations (greater than 1.5 mg m(exp -3)) during the austral spring, summer, and fall, matching that evident throughout the CCS. Between these regions, off northern and central Chile, the seasonal maximum occurs during July-August (austral winter), contrary to the influence of upwelling favorable winds. Within the CCS, the dominant feature of interannual variability in the 8-year time series is a strong negative concentration anomaly in 1983, an El Nino year. The relative value of this negative anomaly is strongest off central California and is followed by an even stronger negative anomaly is strongest off central California and is followed by an even stronger negative anomaly in 1984 off Baja, California. In the PCS, strong negative anomalies during the 1982-1983 El Nino period are evident only off the Peruvian coast and are evident there only in the regions 100 km or more from the coast. Although negative anomalies associated with the El Nino were not present at higher latitudes (more than approximately 20 deg S) in the PCS, the extremely sparse sampling weakens our confidence in the results of the interannual analysis in this region. An upper estimate of the systematic winter bias remaining in the global CZCS data after reprocessing with the multiple scattering algorithm is given in the appendix.
Document ID
19950029611
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Thomas, A. C.
(Atlantic Cntr. for Remote Sensing of the Oceans Halifax, Nova Scotia, Canada)
Huang, F.
(Atlantic Cntr. for Remote Sensing of the Oceans Halifax, Nova Scotia, Canada)
Strub, P. T.
(Oregon State Univ. Corvallis, OR, United States)
James, C.
(Oregon State Univ. Corvallis, OR, United States)
Date Acquired
August 16, 2013
Publication Date
April 15, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: C4
ISSN: 0148-0227
Subject Category
Oceanography
Accession Number
95A61210
Funding Number(s)
CONTRACT_GRANT: NAGW-2475
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available