NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Lick optical spectra of quasar HS 1946+7658 at 10 kilometers per second resolution Lyman-alpha forest and metal absorption systemsWe present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar abundances. We see C II*(lambda 1335) offset by 15 km/sec with respect to C II(lambda 1334), presumably because the gas density varies from 2 to 8 cm(exp -3) with changing velocity in the DLA system. These densities imply that the damped component is 6-25 pc thick, which is reasonable for a single cloud in a cold spiral disk. They also imply that the cloud is relatively highly ionized with more C III than C II, more O III than O I, and log N(H I) = 20.72, which is 3 times the H I column. The system at z(abs) = 1.7382 is also believed to be damped with N(H I) approximately equals 10(exp 21) cm(exp -2), because we see Cr II, but its Ly alpha line will never be seen because it is below the Lyman limit of the other DLA system. We see a 2.6 sigma lack of Ly alpha forest lines well away from the QSO redshift, which may be a chance fluctuation. We also see a correlation between column density N(H I) and Doppler parameter b for 96 unsaturated Ly Alpha forest absorption lines, and although this correlation persists in the 36 Ly alpha lines which lie in regions where the SNR approximately equals 8-16, we agree with Rauch et al. (1993) that it is probably a bogus effect of low supernova remnant (SNR). The same applies to lines with very low b values: in regions where SNR less than or equal to 8 we see many Ly alpha lines which appear to have 10 less than or equal to b less than or equal to 20, but when 8 less than or equal to SNR less than or equal to 16 we see only one line with b less than or equal to 15 km/sec, and two others which we believe have b less than or equal to 20, with values of 20 and 16 km/sec. Traditional Ly alpha line samples which include all lines which have W/sigma(W) greater than or equal to 4 are not adequate to explore the distribution of the properties of individual clouds, because we need much higher (W/sigma(W)) and SNR to avoid the strong biases.
Document ID
19950032344
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Fan, Xiao-Ming
(Univ. of California, San Diego, CA United States)
Tytler, David
(Univ. of California, San Diego, CA United States)
Date Acquired
August 16, 2013
Publication Date
September 1, 1994
Publication Information
Publication: The Astrophysical Journal Supplement Series
Volume: 94
Issue: 1
ISSN: 0067-0049
Subject Category
Astrophysics
Accession Number
95A63943
Funding Number(s)
CONTRACT_GRANT: NAGW-2119
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available