NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Toward unbiased determination of the redshift evolution of Lyman-alpha forest cloudsThe possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.
Document ID
19950034840
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Lu, Limin
(University of Wisconsin, Madison, WI United States)
Zuo, Lin
(University of Toronto Toronto, Ontario, Canada)
Date Acquired
August 16, 2013
Publication Date
May 10, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 426
Issue: 2
ISSN: 0004-637X
Subject Category
Astronomy
Accession Number
95A66439
Funding Number(s)
CONTRACT_GRANT: NAS5-26555
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available