NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An accreting black hole model for Sagittarius A(*). 2: A detailed studySgr A(*) is a unique, compact radio source at the Galactic center whose characteristics suggest that it may be a massive (i.e., approximately 10(exp 6) solar mass) black hole accreting from an ambient wind in that region. Earlier (simplified) calculations suggested that its 10(exp 8) - 10(exp 20) Hz spectrum could be derived from bremsstrahlung and magnetic bremsstrahlung emission from plasma descending toward the event horizon at a rate of roughly 10(exp 22) g/s. Here, we introduce several significant improvements to the model, including (1) an exact treatment of the cyclotron/synchrotron emissivity that is valid for all temperatures, (2) the actual determination of the temperature distribution in the inflow, and (3) the effect on the spectrum should the accreting plasma have a residual angular momentum, possibly forming a disk at small radii. We find that the most likely value of the mass in this improved model is approximately equals 2 +/- 1 x 10(exp 6) solar mass, close to the range inferred earlier, but about a factor of 2 greater than the previous 'best-fit' number. The main reason for this difference is that the more realistic (new) formulation of the magnetic bremsstrahlung emissivity has fluctuations with frequency that decrease the overall line-of-sight intensity, thereby pointing to a slightly larger mass in order to account for the observed spectrum. We also find that a slight excess of angular momentum in the accreting gas may be necessary in order to account for the IR luminosity from this source. Such an excess is consistent with the results of ongoing three-dimensional simulations that will be reported elsewhere.
Document ID
19950034848
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Melia, Fulvio
(University of Arizona, Tuscon, AZ United States)
Date Acquired
August 16, 2013
Publication Date
May 10, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 426
Issue: 2
ISSN: 0004-637X
Subject Category
Astronomy
Accession Number
95A66447
Funding Number(s)
CONTRACT_GRANT: NSF PHY-88-57218
CONTRACT_GRANT: NAGW-2518
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available