NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A multi-ion generalized transport model of the polar windThe higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He(+). Solutions are also presented for various minor ions, both atomic and molecular and both singly and multiply charged.
Document ID
19950037020
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Demars, H. G.
(Utah State University Logan, UT, United States)
Schunk, R. W.
(Utah State University Logan, UT, United States)
Date Acquired
August 16, 2013
Publication Date
February 1, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: A2
ISSN: 0148-0227
Subject Category
Geophysics
Accession Number
95A68619
Funding Number(s)
CONTRACT_GRANT: NAG5-1484
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available