NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Large-angle cosmic microwave background anisotropies in an open universeIf the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.
Document ID
19950040752
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Kamionkowski, Marc
(Inst. for Advanced Study, Princeton, NJ United States)
Spergel, David N.
(Princeton Univ. Observatory, Princeton, NJ, United States)
Date Acquired
August 16, 2013
Publication Date
September 1, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 432
Issue: 1
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A72351
Funding Number(s)
CONTRACT_GRANT: DE-FG02-90ER-40542
CONTRACT_GRANT: NSF AST-88-58145
CONTRACT_GRANT: NAGW-2448
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available