NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Very low mass stars and white dwarfs in NGC 6397Deep Wide Field/Planetary Camera 2 (WFPC2) images in wide bands centered at 606 and 802 nm were taken with the Hubble Space Telescope (HST) 4.6 min from the center of the galactic globular cluster NGC 6397. The images were used to accurately position approximately 2120 stars detected in the field on a color magnitude diagram down to a limiting magnitude m(sub 814) approximately = m(sub I) approximately = 26 determined reliably and solely by counting statistics. A white dwarf sequence and a rich, narrow cluster main sequence are detected for the first time, the latter stretching from m(sub 814) = 18.5 to m(sub 814) = 24.0 where it becomes indistinguishable from the field population. Two changes of slope of the main sequence at m(sub 814) approximately = 20 and m(sub 814) approximately = 22.5 are evident. The corresponding luminosity function increases slowly from M(sub 814) approximately = 6.5 to 8.5 are expected from ground-based observations but then drops sharply from there dwon to the measurement limit. The corresponding mass function obtained bu using the only presently available mass-luminosity function for the cluster's metallicity rises to a plateau between approximately 0.25 and approximately 0.15 solar mass, but drops toward the expected mass limit of the normal hydrogen burning main sequence at approximately 0.1 solar mass. This result is in clear contrast to that obtained from the ground and implies either a substantial modification of the cluster's initial mass function due to dynamical evolution in its lifetime, or that very low mass stars are not produced in any dynamically significant amount by clusters of this type. The white dwarf sequence is in reasonable agreement with a cooling sequence of models of mass 0.5 solar mass at the canonical distance of NGC 6397 with a scatter that is most likely due to photometric errors, but may also reflect real differences in mass or chemical composition. Contamination from unresolved galaxies, which cannot be reliably identified with our filters, makes it difficult to meaningfully compare the observed white dwarf luminosity function with its theoretical counterpart.
Document ID
19950041415
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Paresce, Francesco
(Space Telescope Science Inst. Baltimore, MD, United States)
De Marchi, Guido
(Space Telescope Science Inst. Baltimore, MD, United States)
Romaniello, Martino
(Univ. di Pisa Pisa, Italy)
Date Acquired
August 16, 2013
Publication Date
February 10, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 440
Issue: 1
ISSN: 0004-637X
Subject Category
Astronomy
Accession Number
95A73014
Funding Number(s)
CONTRACT_GRANT: NAS5-26555
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available