NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Is chemical heating a major cause of the mesosphere inversion layer?A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.
Document ID
19950043427
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Meriwether, John W.
(Clemson University Clemson, SC, United States)
Mlynczak, Martin G.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 16, 2013
Publication Date
January 20, 1995
Publication Information
Publication: Journal of Geophysical Research
Volume: 100
Issue: D1
ISSN: 0148-0227
Subject Category
Environment Pollution
Accession Number
95A75026
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available