NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A simulation of the intracluster medium with feedback from cluster galaxiesWe detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.
Document ID
19950043729
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Metzler, Christopher A.
(Michigan Univ. Ann Arbor, MI, United States)
Evrard, August E.
(Michigan Univ. Ann Arbor, MI, United States)
Date Acquired
August 16, 2013
Publication Date
December 20, 1994
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 437
Issue: 2
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A75328
Funding Number(s)
CONTRACT_GRANT: NAGW-2367
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available