NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Pair cascades in extragalactic jets. 1: Gamma raysA model of the approximately 0.1-10 GeV gamma-ray jets observed by the EGRET instrument on the Compton Gamma Ray Observatory (CGRO) is developed. It is shown that the soft X-ray background in an active galactic nuclei (AGN) contributes an opacity to pair production and that a gamma-ray photosphere or 'gamma-sphere' can be defined whose radius increases with gamma-ray energy E(sub gamma). It is proposed that the observed gamma-ray emission is due to inverse Compton scattering of the ambient soft X-rays by relativistic pairs accelerated in situ by shock fronts in a relativistic jet. For a wide range of assumed physical conditions, the emission at a given E(sub gamma) originates from near the associated gamma-spheres; emission from below the gamma-sphere initiates a cascade down to the energy where the gamma-rays can escape freely. In this model, the slope of the emergent gamma-ray spectrum is determined by the scattered, soft X-ray spectrum and the variation of the particle acceleration rate with jet radius. In general it is expected that the variation in the gamma-ray flux will be either slower or later at higher energy. It is also shown that the efficiency of conversion of energy from injected high-energy pairs to 0.1-10 GeV gamma-rays is typically high so that the models are radiatively efficient. It is argued that the observed gamma-ray jets are likely to be particle-dominated, though magnetically confined. The gamma-ray spectrum should continue down to an energy approximately 5 MeV emitted from an annihilation radius within which the pair content of the jet is limited by annihilation. This is probably the site of the beamed hard X-ray emission. It is speculated that the relativistic jets associated with radio-loud AGNs are powered electromagnetically by a spinning black hole and that they are collimated by an encircling MHD wind leaving the accretion disk at a slower speed. Powerful FR2 radio sources are formed when the hole spins rapidly and the relativistic core accelerates the MHD sheath; low-power FR1 sources ensue when the opposite occurs. Finally, it is suggested that the key factor which determines whether or not a given active nucleus can form a jet and a radio to gamma-ray nonthermal continuum is the central density of mass-losing stars which, when large, precludes the formation of a super-Alfvenic, collimating wind.
Document ID
19950044560
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Blandford, R. D.
(Caltech, Pasadena, CA United States)
Levinson, A.
(Caltech, Pasadena, CA United States)
Date Acquired
August 16, 2013
Publication Date
March 1, 1995
Publication Information
Publication: Astrophysical Journal, Part 1
Volume: 441
Issue: 1
ISSN: 0004-637X
Subject Category
Astrophysics
Accession Number
95A76159
Funding Number(s)
CONTRACT_GRANT: NAGW-2372
CONTRACT_GRANT: NAGW-2816
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available