NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON altimetryIn order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.
Document ID
19950049114
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Tsaoussi, Lucia S.
(Hughes STX Corp. Greenbelt, MD, United States)
Koblinsky, Chester J.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 16, 2013
Publication Date
December 15, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: C12
ISSN: 0148-0227
Subject Category
Oceanography
Accession Number
95A80713
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available