NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Utilitarian models of the solar nebulaModels of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical history. A simple criterion is derived for the condition that silicate grains are evaporated at midplane, and it is argued that this condition was probably fulfilled early in nebular history. Cooling of a hot nebula due tocoagulation of dust and consequent local reduction of optical depth is examined, and it is shown how such a process leads naturally to an enrichment of rock-forming elements in the gas phase.
Document ID
19950053525
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Cassen, Patrick
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 16, 2013
Publication Date
December 1, 1994
Publication Information
Publication: Icarus
Volume: 112
Issue: 2
ISSN: 0019-1035
Subject Category
Astrophysics
Accession Number
95A85124
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available