NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Magnetohydrodynamic Riemann problem and the structure of the magnetic reconnection layerWe present a complete solution for a set of magnetohydrodynamic (MHD) Riemann problems in which the upstream and downstream states have the same total pressure, and in which the normal component of the magnetic field is very small. These solutions are pertinent to subfast flows in the earth's magnetic tail and near the magnetopause. In a coplanar situation a family of solutions exists that depend on two parameters as well as on dissapation mechanisms. In the parallel case the transverse magnetic field either does not change direction or changes the direction twice by involving two intermediate shocks. In the antiparallel case an intermediate shock is always required, except when the solution consists of two switch-off shocks. In a noncoplanar case the solution is not self-similar as a function of x/t, but continues to evolve. At early times the evolution is similar to the coplanar case. In general two time-dependent intermediate shocks are required to rotate the magnetic fields. The velocity shear has a strong effect on the Riemann solution. In some cases no Riemann solution can exist because of the cavitation caused by the slow refraction waves. The calculated magnetopause structure resembles the observed structure for northward interplanetary magnetic field (IMF). However, for southward IMF, the MHD result shows the existence of a depletion layer, which is not supported by observations. We also show that on the magnetosheath side, the Walen relation, which is exact for a rotational discontinuity, can also be well satisfied by a slow shock, an intermediate shock, or the head of a slow rarefaction wave.
Document ID
19950056438
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Wu, C. C.
(University of California, Los Angeles, CA United States)
Date Acquired
August 16, 2013
Publication Date
April 1, 1995
Publication Information
Publication: Journal of Geophysical Research
Volume: 100
Issue: A4
ISSN: 0148-0227
Subject Category
Astrophysics
Accession Number
95A88037
Funding Number(s)
CONTRACT_GRANT: NAGW-2848
CONTRACT_GRANT: NSF ATM-92-01662
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available