NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal-infrared remote sensing and Kirchhoff's Law. 1: Laboratory measurementsBy the end of this century the Earth Observing System (EOS) will provide worldwide, thermal infrared, multispectral images of the Earth, presenting geologists with a new kind of remote sensing data for interpretation. Thus it has become essential to understand the spectral emittance behavior of terrestrial surface materials. Perhaps the most fundamental question to be answereed is the extent to which such materials follow Kirchhoff's law (epsilon = 1 -R) under laboratory and field conditions, especially when a sample displays a thermal gradient. We present the first rigorous quantitative comparison of directional and hemispherical reflectance and directional emittance of rock and soil samples in the laboratory, with thermal gradients induced by heating them from below and allowing them to radiate to a colder background. The results show that only an extemeley low density sample composed of fine particles sifted into a 'fairy castle' structure displays a thermal gradient steep enough within the infrared skin depth to cause significant (6%) departure from Kirchhoff's law. There is no detectable effect on the more normal terrestrial samples, such as soils and rocks measured in the laboratory, even when semitransparent coatings are involved. Thus both emittance and reflectance measurements can be used to calculate sample emissivity for most terrestrial surface materieals. However, the effect on Kirchhoffian behavior of different field environments, which may induce a steeper thermal gradient in particulate samples, has yet to be determined, and some low-density surface materials like newly fallen snow, frost, and efflorescent salts on playas have yet to be measured in emittance.
Document ID
19950057674
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Salisbury, John W.
(Johns Hopkins University Baltimore, Maryland, United States)
Wald, Andrew
(Johns Hopkins University Baltimore, Maryland, United States)
D'Aria, Dana M.
(Johns Hopkins University Baltimore, Maryland, United States)
Date Acquired
August 16, 2013
Publication Date
June 10, 1994
Publication Information
Publication: Journal of Geophysical Research
Volume: 99
Issue: B6
ISSN: 0148-0227
Subject Category
Earth Resources And Remote Sensing
Accession Number
95A89273
Funding Number(s)
CONTRACT_GRANT: NAS5-31373
CONTRACT_GRANT: NAGW-1885
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available