NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Steady state and dynamical structure of a cosmic-ray-modified termination shockA hydrodynamic model is developed for the structure of a cosmic-ray-modified termination shock. The model is based on the two-fluid equations of diffuse shock acceleration (Drury and Volk, 1981). Both the steady state structure of the shock and its interaction with outer heliospheric disturbances are considered. Under the assumption that the solar wind is decelerated by diffusing interstellar cosmic rates, it is shown that the natural state of the termination shock is a gradual deceleration and compression, followed by a discontinuous jump to a downstream state which is dominated by the pressure contribution of the cosmic rays. A representative model is calculated for the steady state which incorporates both interstellar cosmic ray mediation and diffusively accelerated anomalous ions through a proposed thermal leakage mechanism. The interaction of large-scale disturbances with the equilibrium termination shock model is shown to result in some unusual downstream structure, including transmitted shocks and cosmic-ray-modified contact discontinuities. The structure observed may be connected to the 2-kHz outer heliospheric radio emission (Cairns et al., 1992a, b). The time-dependent simulations also demonstrate that interaction with solar wind compressible turbulence (e.g., traveling interplanetary shocks, etc.) could induce the termination shock to continually fluctuate between cosmic-ray-dominated and gas-dynamic states. This fluctuation may represent a partial explanation of the galactic cosmic ray modulation effect and illustrates that the Pioneer and Voyager satellites will encounter an evolving shock whose structure and dynamic properties are strongly influence by the mediation of interstellar and anomalous cosmic rays.
Document ID
19950058991
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Donohue, D. J.
(Univ. of Delaware, Newark, DE United States)
Zank, G. P.
(Univ. of Delaware, Newark, DE United States)
Date Acquired
August 16, 2013
Publication Date
November 1, 1993
Publication Information
Publication: Journal of Geophysical Research
Volume: 98
Issue: A11
ISSN: 0148-0227
Subject Category
Solar Physics
Accession Number
95A90590
Funding Number(s)
CONTRACT_GRANT: NAGW-2076
CONTRACT_GRANT: NAGW-3450
CONTRACT_GRANT: JPL-959167
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available