NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Resolution of the buoyancy in the 8-foot high temperature tunnel combustorCurrently, the 8-Foot High Temperature Tunnel (8-Ft. HTT) combustor produces a good profile at only one point (2000 psia and 3650 R with oxygen enrichment). Air is enriched with oxygen (liquid) so that the combustor product gas will contain the volumetric amount of oxygen normally found in air. The oxygen enriched air has a large fraction that is not reacted and flows through the outer periphery of the fuel injector. This ring of cold air in addition to the relatively cold walls of the combustor set up buoyancy forces that produce a segregation of relatively cool gases at the bottom of the combustor exit. The basic problem is to produce a test gas that has uniform properties at all combustor conditions. The combustor temperature may be as high as 3700 R or as low as 2000 R. Combustor pressures can be as high as 3500 psia (no oxygen enrichment) and as low as 600 psia. The segregation is most severe with oxygen enriched air, since its temperature is lower and its density is high. The combustor is lined with nickel 201 and can be operated at about 1600 R maximum. A global mixing process is desired that produces an acceptable profile of temperature, species, and velocity at the exit of the combustor. The ultimate goal is a temperature profile with about 100 R variance and about 2 percent variance in oxygen. The exit total temperature must not be lowered significantly by the mixing apparatus or mechanisms employed. If immersed bodies are used, they must also be kept very hot. All combustor wall modifications must be able to survive the heat and structural conditions of the varied operating conditions. Our approach to resolving this issue is being conducted in three stages: (1) Consider mixing exclusively, (2) Resolve the heat transfer concerns resulting from the chosen mixing strategy, and (3) Solve the material and structural problems resulting from stages (1) and (2). Since the 8-Ft. HTT is unavailable for experimentation, the study is conducted exclusively with computational fluid dynamic (CPD) codes (Fluent/Uns and Rampant 3.1) using unstructured grid through body fitted coordinates. Both CFD codes are general purpose Navier-Stokes solution packages that can solve integral conservation equations for conservation of mass, momentum and energy. The governing equations are discretized using a control-volume finite-element method on unstructured triangular 2-D grids. In the interest of time, a 3-D tetrahedral grid was used to check the 2-D results on one mixing strategy and the 2-D results were confirmed. Preliminary results indicate that excellent mixing can be achieved with a body placed in the center of the flowing hot fluid with a minor modification to the combustor wall similar to a model positioned in the test section of a wind tunnel. The concept here, is to create longitudinal vortices strong enough to bring both fluids into intimate contact with each other near the wall where the cold fluid resides. However, there may be a trade-off in the choice of mixing strategy, heat transfer and structural requirements. Currently, we are examining the more promising geometries for heat transfer concerns and developing strategies for the material of construction of the center body.
Document ID
19960020782
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Loney, Norman W.
(New Jersey Inst. of Tech. Newark, NJ United States)
Date Acquired
August 17, 2013
Publication Date
December 1, 1995
Publication Information
Publication: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program
Subject Category
Research And Support Facilities (Air)
Accession Number
96N24305
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available