NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The origin of the solar windThe high speed solar wind, which is associated with coronal holes and unipolar interplanetary magnetic field, has now been observed in situ beyond 0.3 a.u. and at latitudes up to 80 degrees. Its important characteristics are that it is remarkably steady in terms of flow properties and composition and that the ions, especially minor species, are favored in terms of heating and acceleration. We have proposed that the high speed wind, with its associated coronal holes, forms the basic mode of solar wind flow. In contrast, the low speed wind is inherently non-stationary, filamentary and not in equilibrium with conditions at the coronal base. It is presumably the result of continual reconfigurations of the force-free magnetic field in the low-latitude closed corona which allow trapped plasma to drain away along transiently open flux tubes. Observations of high speed solar wind close to its source are hampered by the essential heterogeneity of the corona, even at sunspot minimum. In particular it is difficult to determine more than limits to the density, temperature and wave amplitude near the coronal base as a result of contamination from fore- and back-ground plasma. We interpret the observations as indicating that the high speed solar wind originates in the chromospheric network, covering only about 1% of the surface of the sun, where the magnetic field is complex and not unipolar. As a result of small-scale reconnection events in this 'furnace', Alfven waves are generated with a flat spectrum covering the approximate range 10 kHz to 10 Hz. The plasma is likely to be produced as a result of downwards thermal conduction and possibly photoionization at the top of the low density chromospheric interface to the furnace, thus controlling the mass flux in the wind. The immediate source of free (magnetic) energy is in the form of granule-sized loops which are continually carried into the network from the sides. The resulting wave spectrum is such that energy can be efficiently transferred to the ions within a few solar radii of the base of the corona, favoring heavy species and creating stable, fast solar wind.
Document ID
19960021273
Acquisition Source
Jet Propulsion Laboratory
Document Type
Conference Paper
Authors
Axford, W. I.
(Max-Planck-Inst. fuer Aeronomie Katlenburg-Lindau, Germany)
McKenzie, J. F.
(Max-Planck-Inst. fuer Aeronomie Katlenburg-Lindau, Germany)
Date Acquired
August 17, 2013
Publication Date
June 30, 1995
Publication Information
Publication: International Solar Wind 8 Conference
Subject Category
Solar Physics
Accession Number
96N24669
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available