NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental Study of Buoyant-Thermocapillary Convection in a Rectangular CavityThe problem of buoyant-thermocapillary convection in cavities is governed by a relatively large number of nondimensional parameters, and there is consequently a large number of different types of flow that can be found in this system. Previous results give disjoint glimpses of a wide variety of qualitatively and quantitatively different results in widely different parts of parameter space. In this study, we report experiments on the primary and secondary instabilities in a geometry with equal aspect ratios in the range from 1 to 8 in both the direction along and perpendicular to the applied temperature gradient. We thus complement previous work which mostly involved either fluid layers of large extent in both directions, or consisted of investigations of strictly two-dimensional disturbances. We observe the primary transition from an essentially two-dimensional flow to steady three-dimensional longitudinal rolls. The critical Marangoni number is found to depend on the aspect ratios of the system, and varies from 4.6 x 10(exp 5) at aspect ratio 2.0 to 5.5 x 10(exp 4) at aspect ratio 3.5. Further, we have investigated the stability of the three-dimensional flow at larger Marangoni numbers, and find a novel oscillatory flow at critical Marangoni numbers of the order of 6 x 10(exp 5). We suggest possible mechanisms which give rise to the oscillation, and find that it is expected to be a relaxation type oscillation.
Document ID
19970000400
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Braunsfurth, Manfred G.
(Stanford Univ. CA United States)
Homsy, George M.
(Stanford Univ. CA United States)
Date Acquired
August 17, 2013
Publication Date
September 1, 1996
Publication Information
Publication: Third Microgravity Fluid Physics Conference
Subject Category
Fluid Mechanics And Heat Transfer
Accession Number
97N10367
Funding Number(s)
CONTRACT_GRANT: NAG3-1475
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available