NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature MeasurementsThe recent ban on the production of bromotrifluoromethane (CF3Br) because of its high stratospheric ozone depletion potential has led to interest in finding alternative agents for fire extinguishing applications. Some of the promising alternatives are fluorinated hydrocarbons. A clear understanding of the effects of CF3Br and alternative chemical suppressants on diffusion flames is therefore necessary in the selection of alternative suppressants for use in normal and microgravity. The flame inhibition effects of halogen compounds have been studied extensively in premixed systems. The effect of addition of halocarbons (carbon-halogen compounds) to diffusion flames has been studied experimentally in coflow configurations and in counterflow gaseous and liquid-pool flames. Halogenated compounds are believed to inhibit combustion by scavenging hydrogen radicals to form the relatively unreactive compound HF, or through a catalytic recombination cycle involving HBr to form H2. Comparisons between halogens show that bromine inhibition is significantly more effective than chlorine or fluorine. Although fluorinated compounds are only slightly more effective inhibitors on a mass basis than nitrogen, they are more effective on a volume basis and are easily stored in liquid form. The objectives of this study are (a) to determine the stability limits of laminar jet diffusion flames with respect to inhibitor concentration in both normal and microgravity, and (b) to investigate the structure of halocarbon-inhibited flames. In the initial phase of this project, visual diagnostics were used to observe the structure and behavior of normal and microgravity flames. The initial observations showed significant changes in the structure of the flames with the addition of halocarbons to the surrounding environment, as discussed below. Furthermore, the study established that the flames are more stable relative to the addition of halocarbons in microgravity than in normal gravity. Visual diagnostics of flames are, however, necessarily limited to detection of radiative emission in the visible range, and offer only qualitative information about the nature of the processes in the flame. In particular, the study sought to understand the structure of the inhibitor-perturbed flames with regard to temperature and species concentration in the outer region of the flame. Whereas thermocouple measurements can be used in ground based studies, their implementation in drop-tower rigs is limited. A possible approach to determine the temperature field around the flame is to use interferometric techniques. The implementation and testing of a shear-plate interferometry technique is described below.
Document ID
19970020570
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
VanDerWege, Brad A.
(Massachusetts Inst. of Tech. Cambridge, MA United States)
OBrien, Chris J.
(Massachusetts Inst. of Tech. Cambridge, MA United States)
Hochgreb, Simone
(Massachusetts Inst. of Tech. Cambridge, MA United States)
Date Acquired
August 17, 2013
Publication Date
May 1, 1997
Publication Information
Publication: Fourth International Microgravity Combustion Workshop
Subject Category
Inorganic And Physical Chemistry
Accession Number
97N21843
Funding Number(s)
CONTRACT_GRANT: NAG3-160
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available