NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Solidification Interface Shape and Location During Processing in High Gradient Furnace with QuenchHigh Gradient Furnace with Quench (HGFQ) is being developed to facilitate metals processing experiments aboard the International Space Station. The sample is centered in an annular furnace and is held fixed during processing. The furnace itself is made to translate over the sample. Once in process, heat will flow through the sample from the Heater Zone to the Chill Zone. If operating conditions are correct, the solidification interface will stand in the gradient zone. Objectives of the HGFQ process are to provide a high gradient for the solidification with the solidification interface properly positioned in the gradient zone. At the recent RDR for HGFQ, one of the panelists raised the question about the suitability of HGFQ for potential future PIs. Specifically, it was stated by the design team at RDR that the present HGFQ design would provide a radius of curvature of the solidification interface of at least one sample diameter. The RDR panel argued that this was too small, and that most investigators would need a radius of curvature larger than this. The requirements established by the current PIs are shown. These requirements do not contain any specification about the interface shape. However, these requirements do define the envelope of operational parameters for HGFQ. The objectives of the present investigation are to 1) determine a suitable means of quantifying the interface shape, and 2) investigate the interface shape and how it is affected by processing parameters. The processing parameters to be considered are 1) sample material, 2) sample diameter, and 3) gradient zone length.
Document ID
19980206203
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Woodbury, Keith A.
(Alabama Univ. Huntsville, AL United States)
Date Acquired
August 18, 2013
Publication Date
October 1, 1996
Subject Category
Metallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available