NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, CanadaVisible and near-IR reflectivity, Mossbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration (Fe(3+)/Fe(sub tot)) and ranged from approx. 1000 nm (high-Ca pyroxene) to approx. 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the 850 and 1000 nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relatively high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from analyses of soil at the two Viking landing sites.
Document ID
19980210062
Acquisition Source
Johnson Space Center
Document Type
Reprint (Version printed in journal)
Authors
Morris, Richard V.
(NASA Johnson Space Center Houston, TX United States)
Golden, D. C.
(Dual, Inc. Houston, TX United States)
Bell, James F., III
(National Academy of Sciences - National Research Council Moffett Field, CA United States)
Lauer, H. V., Jr.
(Lockheed Engineering and Sciences Co. Houston, TX United States)
Date Acquired
August 18, 2013
Publication Date
March 25, 1995
Publication Information
Publication: MSATT
Publisher: American Geophysical Union
Volume: 100
Issue: E3
Subject Category
Geophysics
Report/Patent Number
Paper-95JE01500
Distribution Limits
Public
Copyright
Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available