NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier CoatingsCeramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.
Document ID
19980214847
Acquisition Source
Legacy CDMS
Document Type
Conference Paper
Authors
Zhu, Dong-Ming
(National Academy of Sciences - National Research Council Cleveland, OH United States)
Miller, Robert A.
(NASA Lewis Research Center Cleveland, OH United States)
Date Acquired
August 18, 2013
Publication Date
May 1, 1998
Publication Information
Publication: Thermal Barrier Coating Workshop, 1997
Subject Category
Nonmetallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available