NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Determining the Molecular Growth Mechanisms of Tetragonal Lysozyme CrystalsStudies of the growth of tetragonal lysozyme crystals employing atomic force microscopy (AFM) have shown the advantages of this technique in investigating the growth mechanisms of protein crystals [1]. The resolution of these studies was in the micron range, which revealed surface features such as the occurrence of dislocations and 2D nucleation islands, similar to those found in inorganic systems. They clearly showed that the crystals grew by these surface growth mechanisms. However, the studies also revealed some surprising features, such as bimolecular growth step heights and pronounced growth anisotropies on the (110) face, which could not be explained. In previous studies we employed Periodic Bond Chain (PBC) theory to tetragonal lysozyme crystal growth and found that the crystals were constructed by strongly bonded molecular chains forming helices about the 43 axes [2,3]. The helices were connected to each other with weaker bonds. The growth process was shown to proceed by the formation of these 43 helices, resulting in bimolecular growth steps on the (110) face. It was also shown to explain many other observations on tetragonal lysozyme crystal growth. Although PBC analysis is not a new technique [4], it has not been widely used as the mechanisms predicted from it could not be experimentally verified. In this study the growth process of these crystals was investigated, particularly for the (110) face, employing some newly developed high resolution AFM techniques. These techniques allowed individual lysozyme molecules on the crystal faces to be resolved and predictions from PBC analyses to be tested. The analyses had shown that of the two possible packing arrangements on (110) faces, only one would actually occur. Employing the first of the newly developed techniques, these faces were scanned by high resolution AFM. The resulting images were then compared with the theoretically constructed images for the two possible packing arrangements on the (110) face. The theoretical images were constructed by convolution of the crystal surface shape obtained from crystallographic data with the AFM tip shape. The comparison confirmed the prediction that the molecular packing arrangement of these faces corresponded to that for complete 43 helices. The second AFM technique that was developed was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth unit dimensions to be measured. These measurements showed that growth on the (110) face proceeded by the formation of new 43 helices from the addition of at least tetramer units in the [110] direction. In the [001] direction growth proceeded by the addition of various aggregate units corresponding to the 4(sub 3) helices.
Document ID
19980236878
Acquisition Source
Marshall Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Li, Huayu
(Toledo Univ. OH United States)
Nadarajah, Arunan
(Toledo Univ. OH United States)
Konnert, John H.
(Naval Research Lab. Arlington, VA United States)
Pusey, Marc L.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Date Acquired
August 18, 2013
Publication Date
January 1, 1998
Subject Category
Solid-State Physics
Meeting Information
Meeting: Crystallization of Biological Maromolecules
Location: Granada
Country: Spain
Start Date: May 3, 1998
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available