NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure SelectionSolidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.
Document ID
19990040301
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Karma, Alain
(Northeastern Univ. Boston, MA United States)
Trivedi, Rohit
(Ames Lab. IA United States)
Date Acquired
August 19, 2013
Publication Date
February 1, 1999
Publication Information
Publication: NASA Microgravity Materials Science Conference
Subject Category
Materials Processing
Funding Number(s)
CONTRACT_GRANT: NAG8-1254
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available