NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Theory of Oscillating Edge FlamesIt has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the oscillations in all three experiments; and no new mechanism is invoked (Occam's original 'Razor'). Such a strategy eliminates Marangoni effects as the source, for these are absent in the second and third experiments. And it eliminates arguments that point to numerically predicted gas eddies as the source, a new mechanism, unelucidated. Indeed, we hypothesize that the essential driving mechanism for the instability is a combination of large Lewis number and heat losses from the reacting structure near the flame edge. Instabilities driven by these mechanisms are commonplace in 1D configurations. Chemical reactor theory, for example, leads to system responses which mimic the response of the candle flame - steady flame, oscillations, extinction. In a combustion context, oscillating instabilities were first reported for diffusion flames in a theoretical study by Kirkby and Schmitz, and here also the instabilities are associated with near-extinction conditions, large Lewis numbers, and heat losses. And deflagrations will oscillate if the Lewis number is large enough, oscillations that are exacerbated when heat losses are present, whether global or to a surface.
Document ID
19990054002
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Buckmaster, J.
(Illinois Univ. at Urbana-Champaign Urbana, IL United States)
Zhang, Yi
(Illinois Univ. at Urbana-Champaign Urbana, IL United States)
Date Acquired
August 19, 2013
Publication Date
May 1, 1999
Publication Information
Publication: Fifth International Microgravity Combustion Workshop
Subject Category
Inorganic And Physical Chemistry
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available