NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Detailed Multidimensional Simulations of the Structure and Dynamics of FlamesNumerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.
Document ID
19990054007
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Patnaik, G.
(Naval Research Lab. Washington, DC United States)
Kailasanath, K.
(Naval Research Lab. Washington, DC United States)
Date Acquired
August 19, 2013
Publication Date
May 1, 1999
Publication Information
Publication: Fifth International Microgravity Combustion Workshop
Subject Category
Inorganic And Physical Chemistry
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available