NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Compact, Tunable Near-UV Source for Quantitative Microgravity Combustion DiagnosticsThere is a need for improved optical diagnostic methods for use in microgravity combustion research. Spectroscopic methods with fast time response that can provide absolute concentrations and concentration profiles of important chemical species in flames are needed to facilitate the understanding of combustion kinetics in microgravity. Although a variety of sophisticated laser-based diagnostics (such as planar laser induced fluorescence, degenerate four wave mixing and coherent Raman methods) have been applied to the study of combustion in laboratory flames, the instrumentation associated with these methods is not well suited to microgravity drop tower or space station platforms. Important attributes of diagnostic systems for such applications include compact size, low power consumption, ruggedness, and reliability. We describe a diode laser-based near-UV source designed with the constraints of microgravity research in mind. Coherent light near 420 nm is generated by frequency doubling in a nonlinear crystal. This light source is single mode with a very narrow bandwidth suitable for gas phase diagnostics, can be tuned over several 1/cm and can be wavelength modulated at up to MHz frequencies. We demonstrate the usefulness of this source for combustion diagnostics by measuring CH radical concentration profiles in an atmospheric pressure laboratory flame. The radical concentrations are measured using wavelength modulation spectroscopy (WMS) to obtain the line-of-sight integrated absorption for different paths through the flame. Laser induced fluorescence (LIF) measurements are also demonstrated with this instrument, showing the feasibility of simultaneous WMS absorption and LIF measurements with the same light source. LIF detection perpendicular to the laser beam can be used to map relative species densities along the line-of-sight while the integrated absorption available through WMS provides a mathematical constraint on the extraction of quantitative information from the LIF data. Combining absorption with LIF - especially if the measurements are made simultaneously with the same excitation beam - may allow elimination of geometrical factors and effects of intensity fluctuations (common difficulties with the analysis of LIF data) from the analysis.
Document ID
19990054053
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Peterson, K. A.
(Southwest Sciences, Inc. Santa Fe, NM United States)
Oh, D. B.
(Southwest Sciences, Inc. Santa Fe, NM United States)
Date Acquired
August 19, 2013
Publication Date
May 1, 1999
Publication Information
Publication: Fifth International Microgravity Combustion Workshop
Subject Category
Materials Processing
Funding Number(s)
CONTRACT_GRANT: NAS3-98044
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available