NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Internal Heterogeneous Processes in Aluminum CombustionThis paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (< 1 %) regions are identified within the particles using back-scattered electron imaging and WDS. During stage II, oscillations are observed in particle radiation and the flame and smoke cloud are distorted from their original spherically-symmetric shape. In stage III, particle radiation continues to exhibit oscillations, but its radiation intensity drops and remains at a nearly constant level. The measured temperature decreases to about 2300 K. Also, larger changes in particle velocities are observed, and oxide caps are found on quenched particle surfaces. While these results showed the correlation between the aluminum particle combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.
Document ID
19990054079
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Dreizin, E. L.
(Titan Corp. Princeton, NJ United States)
Date Acquired
August 19, 2013
Publication Date
May 1, 1999
Publication Information
Publication: Fifth International Microgravity Combustion Workshop
Subject Category
Inorganic And Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NAS3-27259
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available