NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Physically-Derived Dynamical Cores in Atmospheric General Circulation ModelsThe algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.
Document ID
19990103607
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Rood, Richard B.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Lin, Shian-Jiann
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Subject Category
Environment Pollution
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available