NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Onset of Magnetic Reconnection in Tail-Like EquilibriaMagnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.
Document ID
19990104373
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Hesse, Michael
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Birn, Joachim
(Los Alamos National Lab. NM United States)
Kuznetsova, Masha
(Raytheon STX Corp. Greenbelt, MD United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available