NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Modeling the QBO and SAO Driven by Gravity WavesHines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.
Document ID
19990115470
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Mayr, H. G.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Mengel, J. G.
(Space Applications Corp. Vienna, VA United States)
Chan, K. L.
(Hong Kong Univ. of Science and Technology Hong Kong)
Porter, H. S.
(Furman Univ. Greenville, SC United States)
Date Acquired
August 19, 2013
Publication Date
January 1, 1999
Subject Category
Geophysics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available