NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Supersonic Aftbody Closure Wind-Tunnel Testing, Data Analysis, and Computational ResultsThis paper reports on the model, test, and results from the Langley Supersonic Aftbody Closure wind tunnel test. This project is an experimental evaluation of the 1.5% Technology Concept Aircraft (TCA) aftbody closure model (Model 23) in the Langley Unitary Plan Wind Tunnel. The baseline TCA design is the result of a multidisciplinary, multipoint optimization process and was developed using linear design and analysis methods, supplemented with Euler and Navier-Stokes numerical methods. After a thorough design review, it was decided to use an upswept blade attached to the forebody as the mounting system. Structural concerns dictated that a wingtip support system would not be feasible. Only the aftbody part of the model is metric. The metric break was chosen to be at the fuselage station where prior aft-sting supported models had been truncated. Model 23 is thus a modified version of Model 20. The wing strongback, flap parts, and nacelles from Model 20 were used, whereas new aftbodies, a common forebody, and some new tails were fabricated. In summary, significant differences in longitudinal and direction stability and control characteristics between the ABF and ABB aftbody geometries were measured. Correcting the experimental data obtained for the TCA configuration with the flared aftbody to the representative of the baseline TCA closed aftbody will result in a significant reduction in longitudinal stability, a moderate reduction in stabilizer effectiveness and directional stability, and a moderate to significant reduction in rudder effectiveness. These reductions in the stability and control effectiveness levels of the baseline TCA closed aftbody are attributed to the reduction in carry-over area.
Document ID
20000020885
Acquisition Source
Langley Research Center
Document Type
Conference Paper
Authors
Allen, Jerry
(NASA Langley Research Center Hampton, VA United States)
Martin, Grant
(Boeing Co. Long Beach, CA United States)
Kubiatko, Paul
(Boeing Co. Long Beach, CA United States)
Date Acquired
August 19, 2013
Publication Date
December 1, 1999
Publication Information
Publication: 1999 NASA High-Speed Research Performance Workshop
Volume: 1
Issue: Part 2
Subject Category
Aerodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available