NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Strategies and Technologies for In Situ Mineralogical Investigations on MarsSurface landers on Mars (Viking and Pathfinder) have not revealed satisfying answers to the mineralogy and lithology of the planet's surface. In part, this results from their prime directives: Viking focused on exobiology, Pathfinder focused on technology demonstration. The analytical instruments on board the landers made admirable attempts to extract the mineralogy and geology of Mars, as did countless modeling efforts after the missions. Here we suggest a framework for elucidating martian, or any other planetary geology, through an approach that defines (a) type of information required, (b) explorational strategy harmonious with acquisition of these data, (c) interpretation approach to the data, (d) compatible mission architecture, (e) instrumentation for interrogating rocks and soil. (a) Data required: The composition of a planet is ordered at scales ranging from molecules to minerals to rocks, and from geological units to provinces to planetary-scale systems. The largest ordering that in situ compositional instruments can attempt to interrogate is rock type "aggregate" information. This is what the geologist attempts to identify first. From this, mineralogy can be either directly seen or inferred. From mineralogy can be determined elemental abundances and perhaps the state of the compounds as being crystalline or amorphous. Knowledge of rock type and mineralogy is critical for elucidating geologic process. Mars landers acquired extremely valuable elemental data, but attempted to move from elements to aggregates, but this can only be done by making many assumptions and sometimes giant leaps of faith. Data we believe essential are elements, minerals, degree of ordering of compounds, and the aggregate or rock type that these materials compose. (b) Explorational strategy: A lander should function as a surrogate geologist. Of the total landscape, a geologist sees much, but gives detailed attention to an infinitesimally small amount of what is seen. To acquire samples worth detailed scrutiny, as many samples as possible need examining at a cursory or reconnaissance level. A representative, statistically-meaningful sample number cannot be overemphasized. This maxim still applies to geological exploration of our own planet of which we have abundant knowledge. Analysis of many samples mandates low-power consumption per sample. (c) Data interpretation: No single instrument can analyze the full spectrum of the x-axis. An instrument is optimized for detecting certain material characteristics and must therefore affix itself to some point on the x-axis. Any conclusions drawn about data to the left or right of the instrument's position on this axis must necessarily be derived by inference. Hence, it seems logical to include on a mission, instruments that are not closely spaced in their x-axis-position, and if only two analytical methods are used, as shown, they should start at opposite ends of the axis and work towards the center. As examples, we depict a high-resolution camera to evaluate rock type ("aggregate" state) and mineralogy, and an x-ray diffractometer-fluorescence spectrometer (XRD-XRF) to determine elements, minerals, and the degree of order of materials. (d) Mission architecture: No instrument or suite of instruments can be relied upon to always give truly unequivocal analyses. The suite of instruments should therefore permit conclusions of one instrument to be checked against those of another through closed analytical loops. These "loops" can be structured by a combination of orbital imagery, descent imagery, broad-band site viewing/analysis, and data that cover both x and y axes. For example, the detection of a basaltic-looking rock with a microscope should be checked against the elements detected, the appearance of the rock as a lava flow from descent imagery, and so forth. (e) Instrumentation: To satisfy the above criteria, it is necessary to: (i) See the rock or soil with high resolution + magnification, (ii) Examine many samples, (iii) Consume little power per analysis, (iv) Determine elemental species, (v) Determine mineralogy directly (not inferentially) and the degree of ordering of compounds, (vi) Start analyzing from both ends of the x-axis. Every geologist wants to see the hand sample first, and apply a hand lens to its surface. This has not been the starting point for missions to Mars. Thus, our technology satisfies all these criteria . This XRD-XRF-Optical instrument currently being developed, analyses rock or soil surfaces without the need for sample acquisition or preparation; this satisfies the power criterion, and enables many analyses. The device acquires direct mineralogy and determines elemental species. The embedded endoscopic camera satisfies the critical criterion of close inspection of samples; the fiber optic cable can also be used for IR, LTV, or laser sample analysis. Additional information is contained in the original (Figures).
Document ID
20000025365
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
Marshall, J. R.
(Search for Extraterrestrial Intelligence Inst. Moffett Field, CA United States)
Bratton, C.
(Search for Extraterrestrial Intelligence Inst. Moffett Field, CA United States)
Koppel, L.
(Oryx Technology Corp. Fremont, CA United States)
Hecht, M.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA United States)
Metzger, E.
(San Jose State Univ. CA United States)
Date Acquired
August 19, 2013
Publication Date
September 1, 1999
Publication Information
Publication: Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective
Subject Category
Lunar And Planetary Science And Exploration
Meeting Information
Meeting: Lunar and Planetary Science
Location: Houston, TX
Country: United States
Start Date: March 16, 1998
End Date: March 20, 1998
Funding Number(s)
CONTRACT_GRANT: NCC2-926
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available